Department of Mathematics

Course Profile

Course Number: MATH 490	Course Title: Project
Required / Elective: Required	Prerequisite: Senior Standing
Catalog Description:	Textbook / Required Material:
Reading, literature reviews and research projects in mathematics and related areas under the supervision of an academic advisor; submission of the results in the form of a Project report and oral presentation.	Depending on the subject, articles, textbooks, preprints and monographs.
Course Structure / Schedule: $\mathbf{(0 + 0 + 6) 3 / 6}$ ECTS	

Extended Description:

Searching and Finding a Mathematical Topic: By using internet and scientific databases (e.g., MathSciNet, Web of Science)
Collecting Information: Using Internet Recourses and Library
Reading and Paraphrasing Relevant Information
Solving a Mathematical Problem and / or Implementing and Algorithm
Writing a Report
Oral Presentation

Design content: None	Computer usage: scientific databases, mathematic software, for scientific writing Latex, for oral presentations beamer and PowerPoint

Course Outcomes:

By the end of the course the students should be able to:

1. collect, compare, modify and rate information from different type of sources [5,6]
2. design, plan, propose, organize and rearrange of a mathematical project [5,6,7]
3. construct mathematical arguments $[2,3,6]$
4. compose a scientific report $[5,7,8]$
5. report an oral presentation $[5,7,8]$
6. recognize professional and ethical responsibilities of scientific research and scientific writing [7,8]
[2] demonstrate knowledge of mathematics and mechanics to construct, analyze and interpret real world problems,
[3] demonstrate the ability to apply mathematics to the solutions of problems,
[5] have an ability to write computer programs and use algorithms for solving problems,
[6] have a basic knowledge of the main fields of mathematics and mechanics, including differential equations, elasticity theory, fluid mechanics,
[7] have an ability to function both independently and as a member of a multidisciplinary team,
[8]communicate effectively both in written and oral formats,
Recommended reading: N.J. Higham, Handbook of writing for the mathematical sciences, SIAM, 1998.

Teaching methods: Pre-readings, discussions, project, individual work, scientific writing and oral presentation.
Assessment methods: Oral presentation , mathematical report
Student workload:
Preparatory reading..................... 35 hrs
Discussions................................... 15 hrs
Oral Presentations......................... 35 hrs
Writing Report.............................. 65 hrs
TOTAL 150 hrs ... to match 25 x 6 ECTS

Prepared by : Türker Bıyıkoğlu	Revision Date : 08.02.2010

