Department of Mathematics

Course Profile

Course Number: MATH 451	Course Title: Mathematical Theory of Fluids			
Required / Elective: Required	Prerequisites: None			
Catalog Description: Definitions, Kinematics of fluids, velocity and acceleration vectors, material derivative, path and stream lines, vorticity. Equations of motion, stress, constitutive relations. Hydrostatics, ideal fluids, Bernoulli theorems, incompressible ideal fluids, potential flows, vortex flows, surface waves, viscous fluids, Stokes approach, boundary layer theory.	Textbook / Required Material: Fluid Mechanics, Third Edition, Pijush K. Kunda and Ira M. Cohen, Elsevier Academic Press, 2004 USA.			
Course Structure / Schedule: (3+0+0) 3 / 7 ECTS				
Extended Description: Definitions and classification of fluids, mathematical				
preliminaries, vectors and tensors, gradient of scalers and vectors Curvilinear coordinates, cylindrical and spherical coordinates, integral theorems, Green- Gauss theorems,				
Stokes theorems Kinematics of fluids:motion, material derivative, velocity and acceleration vectors, path and flow lines, velocity field around a point: deformation rate and vorticity				
tensors Transport theorems, jump conditions, Balance laws: conservation of mass, balance of linear and angular momenta, balance of energy, stress at a point, stress tensor Moving coordinate systems, circulation, Constitutive equations, Helmholtz resolution theorem, Ideal fluids, Viscous fluids, Equations of ideal fluids in various coordinate systems Bernoulli's theorems, Incompressible ieal fluids, Flows in two dimension, Axially symmetric flows Potential flows Sphere in rectilinear motion, Plane potential lows Uniform plane flows, source and sink problems The use of complex functions in solving plane flow problems Blausius theorems, Blausius theorems for a cylinder in motion, Theorem for a circular disc Conform mapping and its applications to plane flow				
Design content: None	Computer usage: No particular computer usage required			
Course Outcomes: By the end of the course the students should be able to:				
1 characterize the behaviour of a fluid ho	1 characterize the behaviour of a fluid body by a mathematical expression(mathematical			

- 1. characterize the behaviour of a fluid body by a mathematical expression(mathematical modelling) **[2,3,6]**,
- 2. understand the physical characterization of various differential equations [3,4],
- 3. characterize some phenomenon existing in the nature by some mathematical formulas and interpret the resulting solution **[2,3,6]**,
- 4. understand the origin of some phenomenon like sound and its propagation as a wave [2,3,4,6].

[2] demonstrate knowledge of mathematics and mechanics to construct, analyze and interpret real world problems,

[3] demonstrate the ability to apply mathematics to the solutions of problems,

[4] have a basic knowledge of mechanics, information sciences and social sciences,

[6] have a basic knowledge of the main fields of mathematics and mechanics, including differential equations, elasticity theory, fluid mechanics,

Recommended reading: Any fluid mechanics textbook.

Teaching methods: Lectures, homework and office hours discussions.

Assessment methods: Midterm and final exams.

Student workload:

uuuni	workioau.		
	Pre-reading	35	hrs
	Lectures	45	hrs
	Preparatory reading	40	hrs
	Literature review for presentation	35	hrs
	Team work for presentation	20	hrs
	TOTAL	175	5 hrs to match 25x7 ECTS

Prepared by: Hilmi Demiray

Revision Date: 08.02.2010