Department of Mathematics

Course Profile

Course Number : MATH 441	Course Title: Introduction to Modern Algebra
Required / Elective: Elective	Prerequisite: None
Catalog Description:	Textbook / Required Material:
Algebra on sets; basic theory of groups, rings and fields, an introduction to Galois theory.	J. Gilbert and L. Gilbert, <i>Elements of Modern Algebra</i> , sixth Edition, Brooks/Cole, 2005.
Course Structure / Schedule: (3+0+0) 3 / 8 ECTS	
Extended Description :	
Fundamentals: Sets, Mappings, Binary Operations, Relations, Mathematical Induction.	
Integers: Divisibility, Prime Factors, the Greatest Common Divisor, Congruence of Integers and Congruence Classes.	
Groups: Definition of a Group, Subgroups; Cyclic Groups; Isomorphism; Homomorphism; Permutation Groups; Cayley's Theorem; Normal Subgroups; Finite Groups and Lagrange's Theorem; Quotient Groups.	
Rings, Integral Domains and Fields: Definition of a Ring Integral Domains and Fields; Ideals and Quotient Rings; Ring Homomorphism.	
Polynomials: Polynomials over a Ring; Divisibility of Polynomials.	
Design content: None	Computer usage: No particular computer usage required
Course Outcomes:	
By the end of the course the students should be able to:	
 to identify, compare, classify, justify, operate and apply the fundamental algebraic structures [6] prepare for high-level mathematical courses [6] to argue, create and formulate mathematical arguments and mathematical reasoning [2,3,6] 	
4. recognize the impact of abstract algebra on coding, cryptology and science [7,8]	
5. recognize professional and ethical responsibilities of scientific writing [8]	

[2] demonstrate knowledge of mathematics and mechanics to construct, analyze and interpret real world problems,

[3] demonstrate the ability to apply mathematics to the solutions of problems,

[6] have a basic knowledge of the main fields of mathematics and mechanics, including differential equations, elasticity theory, fluid mechanics,

[7] have an ability to function both independently and as a member of a multidisciplinary team,

[8] communicate effectively both in written and oral formats,

Recommended reading: I.N. Herstein, <i>Abstract Algebra</i> , Prentice-Hall., 1996. J.B. Fraleigh, <i>A First Course Abstract Algebra</i> , Addison-Wesley, 2002.	
Teaching methods: Pre-readings, lecture and workshops, discussions, project, individual exercises.	
Assessment methods: Homework, project, final	
Student workload:	
Preparatory reading40 hrs	
Lectures and workshop, discussions47 hrs	
Homework70 hrs	
Presentations15 hrs	
Projects25 hrs	
Final Exam3 hrs	
TOTAL	
Prepared by : Türker Bıyıkoğlu Revision Date: 08.02.2010	