Department of Mathematics

Course Profile

Course Number: MATH 323	Course Title: Calculus of Variations
Required / Elective: Elective	Prerequisites: None
Catalog Description: Historical approach to basic problems; variation of a functional; weak and strong extrema; Euler-Lagrange equations; variational derivative, higher order derivatives, subsidiary conditions; variable end point problems; broken extremals. Noether's heorem, Hamilton- Jacobi Equation, Jacobi's theorem; quadratic functionals, second variation of a functional. Direct methods, Ritz and Kantorovich methods.	Textbook / Required Material: Textbook: I.M.GELFAND & S.V. FOMIN, <i>Calculus of Variation</i> , Prentice Hall, 1963.
Course Structure / Schedule: (3+0+0) 3/ 7 E	
Elements of the theory: Functionals. Function spaces. Variation of a functional. Several variables. Euler Equation. Variable end point problems. Variational derivative. Invariance of Euler's Equation. Examples. <i>Further Generalizations</i> : Fixed end point problems. Parametric form. Higher order derivatives. Subsidiary conditions. <i>The General Variation of a Functional</i> : Basic Formula. Moving end points. Broken Extremals. Weierstrass-Erdmann Conditions. Examples. <i>The Canonical Form of Euler Equations and Related Topics</i> : Canonical form of EE. First Integrals of EE. Legendre Transformations. Examples. Canonical Transformations. Noether's Theorem. Principle of least action. Conservation Laws. Examples. Hamilton-Jacobi Equation. Jacobi's Theorem. Examples. <i>The Second Variation. Sufficient Conditions for Weak Extremum</i> : Quadratic functionals, second variation of a functional. Legendre's condition. <i>Fields. Sufficient Conditions for Strong Extremum</i> : Definitions. Field of functionals. Hilbert's invariant integrals. Strong extremum. Examples. <i>Direct Methods in the Calculus of Variations</i> : Minimizing sequences. Method of finite difference. Ritz method. Examples. Variation of a functional on a variable region. Applications to field theory. <i>Direct Methods in the Calculus of Variations</i> : Kamples. The Sturm-Liouville Problems. General review, more examples. Method of finite difference. Ritz method. Examples. Nariation of a functional on a variable region. Applications to field theory. <i>Direct Methods in the Calculus of Variations</i> : Minimizing Sequences. Method of finite difference. Ritz method. Examples. The Sturm-Liouville Problems. General review, more examples.	
Design content: None	Computer usage: Partly
Course Outcomes: By the end of the course the students should be able to: 1. give a modern treatment of the calculus of variations from a rigorous perspective,	

- 1. give a modern treatment of the calculus of variations from a rigorous perspective, blending classical and modern approaches and applications. [2,3, 6],
- 2. learn rigorous results in the classical and modern calculus of variations and see possible behaviour and application of these results in examples. [3, 6].

[2] demonstrate knowledge of mathematics and mechanics to construct, analyze and interpret real world problems,

[3] demonstrate the ability to apply mathematics to the solutions of problems,

[6] have a basic knowledge of the main fields of mathematics and mechanics, including differential equations, elasticity theory, fluid mechanics,	
Recommended reading:	
1. U. Brechtken-Manderscheid, <i>Introduction to the Calculus of Variations</i> (Chapman & Hall, 1991).	
2. H. Sagan, Introduction to the Calculus of Variations (Dover, 1992).	
3. J. Troutman, Variational Calculus and Optimal Control (Springer-Verlag, 1995).	
Teaching methods: Three hours theoretical presentation with illustrative problem solving.	
Assessment methods:	
Homework, quiz, midterm and final exams.	
Student workload:	
Pre-reading	
Lectures	
Preparatory reading	
Literature review for presentation	
Team work for presentation15 hrs	
TOTAL 175 hrs to match 25x7 ECTS	
Prepared by: Prof.Dr.Esin İnan Revision Date: 08.02.2010	