Department of Mathematics

Course Profile

Course Number : MATH 232	Course Title : Statistics II
Required / Elective : Elective	Pre-requisite : MATH 231
Catalog Description: Two-sample hypothesis testing; analysis of variance; linear regression and correlation; multiple regression and correlation analysis; chi-square applications for nominal data; timeseries analysis.	Textbook / Required Material : Douglas A. Lind, William G. Marchal, Samuel A. Wathen, <i>Basic Statistics for</i> <i>Business and Economics</i> , McGraw-Hill, New York, 2008 (6 th Edition)

Course Structure / Schedule: (3+0+0) 3 / 5 ECTS

Extended Description :

The course is the continuation of MATH231. To this end, the course covers conceptual as well as practical skills, including:

- Two-sample tests of hypothesis
- Analysis of variance (ANOVA)
- Linear regression and correlation analysis
- Multiple regression and correlation analysis
- Chi-square applications

Design content: None

Computer usage: None

Course Outcomes: [relevant program outcomes in brackets]:

By the end of this course, students will be able to:

- 1. demonstrate an understanding of two-sample hypothesis testing [1,2,6]
- 2. compute and interpret correlation between two variables [1]
- 3. distinguish between one-sample and two-sample tests of hypothesis [1,2,6]
- 4. interpret and use a linear and multiple regression model for purposes of description and prediction **[2]**
- 5. recognize the basic logic of ANOVA [1,2]
- 6. interpret and use ANOVA tables to draw conclusions about populations [2]
- 7. interpret and use the chi-square goodness of fit test to ascertain whether the data from a process fit a specified distribution [2]
- 8. demonstrate the ability to apply appropriate statistical techniques to analyze data [2,7]

[1] demonstrate the ability of solving problems by using techniques from calculus, linear algebra, differential equations, probability and statistics,

[2] demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,

[6] have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry,

[7] have an ability to function both independently and as a member of a multidisciplinary team,

Recommended reading Irwin Miller, Marylees Miller, <i>Mathematical Statistics</i> , Houghton Mifflin Company, 2000 (6 th Edition)		
Teaching methods: Lectures.		
Assessment methods: Midterm exams, final exam.		
Student workload:		
Preparatory reading	50 hrs	
Lectures, workshop, discussions	50 hrs	
Homework	20 hrs	
Examinations	5 hrs	
TOTAL 125 hrs		
Prepared by : N. Ziya Perdahçı	Revision Date : Revision Date : 8.2.2010	