Course Number: MATH 425	Course Title: Methods of Applied Mathematics II
Required / Elective: Elective	Pre-requisite : None
Catalog Description: Introduction to integral equations, Volterra and Fredholm equations, solutions by Neumann series, eigenvalue problems;	Textbook / Required Material : Arfken, G.B. Weber, H.J. <i>Mathematical</i> <i>Methods for Physicists</i> (Academic Press)
calculus of variations, Euler-Lagrange equations. Applications to mechanics.	Riley, K.F. Hobson, M. P. & Bence, S. J. Mathematical Methods for Physics and Engineering (CUP)

Course Structure / Schedule : (3+0+0) 3 / 7 ECTS

Extended Description :

The goal of this course is to study various methods used for solving integral equations and variational problems.

The first part of the course is about integral equations (classification, integral equations of the first and second kinds, Fredholm and Volterra equations, simple cases, degenerate kernels, equations soluble by Fourier transform, problems reducible to a differential equation, Neumann series solution (perturbation theory), Fredholm series, eigenvalue problems, Hilbert-Schmidt theory). The second part of the course is devoted tocalculus of variations (functionals, stationary points and the Euler-Lagrange equation, the functional derivative, Fermat's principle, the brachistochrone, generalization to more functions and variables, Hamilton's principle, constrained variational problems, Lagrange's undetermined multipliers, the isoperimetric problems, the catenary, the Rayleigh-Ritz method).

Design content : none.	Computer usage no computer usage required
8	

Course Learning Objectives: By the end of the course the students should be able to:

- 1. recognize and classify integral equations [3,6],
- 2. solve simple cases of Fredholm and Volterra integral equations [3,6],
- 3. understand the concepts of variational problem and derive Euler-Lagrange equations [3,6],
- 4. solve typical problems in variational valculus by defining appropriate functionals [3,6],
- 5. know the notions of Lagrange multipliers and isoperimetric problems [3,6].

[3] demonstrate the ability to apply mathematics to the solutions of problems,

[6] have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry.

Recommended reading

R Courant and D Hilbert, Methods of Mathematical Physics, Vols. I and II, Interscience.

P. J. Collins, Differential and Integral Equations (O.U.P., 2006)

I. M. Gelfand and S. V. Fomin, Calculus of Variations, Dover

Teaching methods

Preparatory-readings, lectures, discussions, assignments		
Assessment methods		
Midterm exams, Final exam		
Student workload:		
Preparatory reading	54 hrs	
Lectures	42 hrs	
Assignments 56 hrs		
Discussions	14 hrs	
Midterm exams 6 hrs		
Final exam	3 hrs	
TOTAL	175 hrs to match 25 x 7 ECTS	
Prepared by : Husnu A. Erbay	Revision Date : 08.02.2010	