Department of Mathematics

Course Profile

Course Number: MATH 343	Course Title: Advanced Linear Algebra
Required / Elective: Elective	Prerequisite: none
Catalog Description: Vector spaces, subspaces, bases and dimension, quotient spaces, linear independence, orthonormal basis, and Gram-Schmidt orthogonalization. Linear transformations; kernel, image, rank, invertibility, diagonalization, matrix of a linear transformation. Determinants. Canonical forms: eigenvectors, eigenvalues, characteristic polynomial, minimal polynomial, symmetric matrix, direct sum decomposition, invariant subspaces, Jordan canonical forms of a matrix, the Cayley-Hamilton theorem	Textbook / Required Material: GELFAND I.M. Lectures on linear algebra, Dover Publications, 1989 .
Course Structure / Schedule: $(3+0+0) 3 / 7$ ECTS	

Extended Description:

Real vector spaces: i) definition; ii) subspaces; iii) span and linear independence; iv) basis and dimensions; Linear spaces with inner product: i) definition of the inner product; ii) GramSchmidt Process iii) orthonormal basis. Linear transformation in linear spaces and their matrix representations: i) kernel and range of a linear transformation; ii) matrix of a linear transformation. Determinants: i) definition and properties of determinants; ii) cofactor expantion; iii) finding inverses by using cofactors. Eigenvalues and eigenvectors: i) characteristic polynomial and equation of a linear operator; ii) the Cayley-Hamilton theorem iii) eigenvalues and eigenvectors; iv) invariant subspaces; v) diagonalization of symmetric matrices. Jordan cells and Jordan canonical form. Other canonical forms. Minimal polynomial. Resolvent matrix.

Design content: None

Computer usage: No particular computer usage required.

Course Outcomes: By the end of the course the students should be able to:

1. recognize the basic ideas and main computational techniques of advanced linear algebra. [3,6],
2. work with abstract concepts of modern mathematics and to read and write proofs of mathematical statements. [3,6],
3. apply methods of advanced linear algebra such as linear space, invariant subspace, canonical forms and so on in other fields of mathematics, engineering and science. [2,3,6].
[2] demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,
[3] demonstrate the ability to apply mathematics to the solutions of problems, [6] have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry.

Recommended reading: Any textbook on advanced linear algebra	
Teaching methods: Pre-readings and lectures.	
Assessment methods:_Midterm exams, final exam	
Student workload: Preparatory read Lectures, worksh Homework \qquad Midterm Exams Final Exam \qquad TOTAL \qquad	
Prepared by: Elman Hasanoğlu	Revision Date: 08.02.2010

