Department of Mathematics

Course Profile

Course Number: MATH 323	Course Title: Calculus of Variations
Required / Elective: Elective	Prerequisites: None
Catalog Description: Historical approach to basic problems; variation of a functional; weak and strong extrema; Euler-Lagrange equations; variational derivative, higher order derivatives, subsidiary conditions; variable end point problems; broken extremals. Noether's heorem, Hamilton- Jacobi Equation, Jacobi's theorem; quadratic functionals, second variation of a functional. Direct methods, Ritz and Kantorovich methods.	Textbook / Required Material: Textbook: I.M.GELFAND & S.V. FOMIN, <i>Calculus of Variation</i> , Prentice Hall, 1963.
Course Structure / Schedule: (3+0+0) 3/ 7 E	CCTS
Elements of the theory: Functionals. Function variables. Euler Equation. Variable end point p of Euler's Equation. Examples. <i>Further Gener</i> Parametric form. Higher order derivatives. Sub <i>a Functional</i> : Basic Formula. Moving end poin Conditions. Examples. <i>The Canonical Form of</i> Canonical form of EE. First Integrals of EE. Let Transformations. Noether's Theorem. Principle Hamilton-Jacobi Equation. Jacobi's Theorem. I <i>Conditions for Weak Extremum</i> : Quadratic fur Legendre's condition. <i>Fields. Sufficient Condi</i> Field of functionals. Hilbert's invariant integrat <i>Methods in the Calculus of Variations</i> : Minim Ritz method. Examples. The Sturm-Liouville p <i>Variational Problems involving Multiple Integ</i> region. Continuous mechanical systems. Variat Applications to field theory. <i>Direct Methods in</i> Sequences. Method of finite difference. Ritz me Problems. General review, more examples.	roblems. Variational derivative. Invariance <i>alizations</i> : Fixed end point problems. sidiary conditions. <i>The General Variation of</i> nts. Broken Extremals. Weierstrass-Erdmann <i>f Euler Equations and Related Topics</i> : egendre Transformations. Examples. Canonical of least action. Conservation Laws. Examples. Examples. <i>The Second Variation. Sufficient</i> nctionals, second variation of a functional. <i>Etions for Strong Extremum</i> : Definitions. Is. Strong extremum. Examples. <i>Direct</i> nizing sequences. Method of finite difference. roblems. General review, more examples. <i>grals</i> : Variation of functionals on a fixed tion of a functional on a variable region. <i>The Calculus of Variations</i> : Minimizing
Design content: None	Computer usage: Partly
Course Outcomes: By the end of the course the	e students should be able to:
1. give a modern treatment of the calculu blending classical and modern approaches a	s of variations from a rigorous perspective, and applications. [2,3, 6],
 learn rigorous results in the classical and a behaviour and application of these results in [2] demonstrate knowledge of mathematics to mathematical models, [3] demonstrate the ability to apply mathem [6] have a basic knowledge of the main field 	to construct, analyze and interpret atics to the solutions of problems,

algebra, differential equations, differential geometry.

Recommended reading:

- 1. U. Brechtken-Manderscheid, *Introduction to the Calculus of Variations* (Chapman & Hall, 1991).
- 2. H. Sagan, Introduction to the Calculus of Variations (Dover, 1992).
- 3. J. Troutman, Variational Calculus and Optimal Control (Springer-Verlag, 1995).

Teaching methods: Three hours theoretical presentation with illustrative problem solving.

Assessment methods:

Homework, quiz, midterm and final exams.

Student workload:

TOTAL	175 hrs to match 25x7 EC	CTS
Team work for presentation	.15 hrs	
Literature review for presentation	. 45 hrs	
Preparatory reading	35 hrs	
Lectures	.45 hrs	
Pre-reading	35 hrs	

Prepared by: Prof.Dr.Esin İnan Revision Date: 08.02.2010