
Department of  Mathematics 

Course Profile    
Course Number: MATH 323 Course Title: Calculus of Variations 

Required / Elective:  Elective Prerequisites: None 
Catalog Description: Historical approach to 
basic problems; variation of a functional; 
weak and strong extrema; Euler-Lagrange 
equations; variational derivative, higher order 
derivatives, subsidiary conditions; variable 
end point problems; broken extremals. 
Noether's heorem, Hamilton- Jacobi 
Equation, Jacobi’s theorem; quadratic 
functionals, second variation of a functional. 
Direct methods, Ritz and Kantorovich 
methods. 

Textbook / Required Material:  
Textbook: I.M.GELFAND & S.V. FOMIN, 
Calculus of Variation, Prentice Hall, 1963.  

 

Course Structure / Schedule:  (3+0+0) 3/  7 ECTS  
Elements of the theory: Functionals. Function spaces. Variation of a functional. Several 
variables. Euler Equation. Variable end point problems.    Variational derivative. Invariance 
of Euler’s Equation. Examples. Further Generalizations: Fixed end point problems. 
Parametric form. Higher order derivatives. Subsidiary conditions.  The General Variation of 
a Functional: Basic Formula. Moving end points. Broken Extremals. Weierstrass-Erdmann 
Conditions. Examples. The Canonical Form of Euler Equations and Related Topics: 
Canonical form of EE. First Integrals of EE. Legendre Transformations. Examples. Canonical 
Transformations. Noether's Theorem. Principle of least action. Conservation Laws. Examples. 
Hamilton-Jacobi Equation. Jacobi’s Theorem. Examples. The Second Variation. Sufficient 
Conditions for Weak Extremum: Quadratic functionals, second variation of a functional. 
Legendre’s condition. Fields. Sufficient Conditions for Strong Extremum:  Definitions. 
Field of functionals. Hilbert’s invariant integrals. Strong extremum. Examples. Direct 
Methods in the Calculus of Variations: Minimizing sequences. Method of finite difference. 
Ritz method. Examples. The Sturm-Liouville problems. General review, more examples. 
Variational Problems involving Multiple Integrals: Variation of functionals on a fixed 
region. Continuous mechanical systems. Variation of a functional on a variable region. 
Applications to field theory. Direct Methods in the Calculus of Variations: Minimizing 
Sequences. Method of finite difference. Ritz method. Examples. The Sturm-Liouville 
Problems. General review, more examples. 

Design content: None Computer usage: Partly 
Course Outcomes: By the end of the course the students should be able to: 
1. give a modern treatment of the calculus of variations from a rigorous perspective, 

blending classical and modern approaches and applications. [2,3, 6], 
2. learn rigorous results in the classical and modern calculus of variations and see possible 

behaviour and application of these results in examples. [3, 6]. 
[2] demonstrate knowledge of mathematics to construct, analyze and interpret 
mathematical models, 
[3] demonstrate the ability to apply mathematics to the solutions of problems, 
[6] have a basic knowledge of  the main fields of mathematics, including analysis, 



algebra, differential equations, differential geometry. 

Recommended reading:  

1. U. Brechtken-Manderscheid, Introduction to the Calculus of Variations (Chapman & 
Hall, 1991).  

2. H. Sagan, Introduction to the Calculus of Variations (Dover, 1992).  
3. J. Troutman, Variational Calculus and Optimal Control (Springer–Verlag, 1995).  

Teaching methods: Three hours theoretical presentation with illustrative problem solving. 

Assessment methods: 
Homework, quiz, midterm and final exams. 

Student workload:  
Pre-reading   .................................................35   hrs 

Lectures ……………………………………45   hrs 

Preparatory  reading       ………………….. 35   hrs    

Literature review for presentation………… 45   hrs 

Team work  for presentation ………………15   hrs 

TOTAL  ………………………………       175 hrs ……  to match 25x7 ECTS 
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