Department of Mathematics

Course Profile

Course Number: MATH 322	Course Title: Special Functions
Required / Elective: Elective	Pre-requisite: None
Catalog Description: Gamma and Beta functions; hypergeometric series and functions; confluent hypergeometric functions, generalized hypergeometric functions; Bessel's functions; Legendre's functions.	Textbook / Required Material: Andrews E.G., Askey R., Roy R. Special Functions. Cambridge University Press, 2000

Course Structure / Schedule: (3+0+0) 3 / 7 ECTS

Extended Description:

Gamma and Beta functions and their properties. Hypergeometric series and functions. Singular Sturm-Liouvilli problem. Special functions as eigenfunctions of this problem. Generating functions for Bessel and Legendre functions. Orthogonal properties of these functions. Fourier-Bessel expantion.

Design content: None

Computer usage: No particular computer usage required.

Course Outcomes: By the end of the course the students should be able to:

- 1. provide an adequate comprehension and appreciation of the usefulness of special functions. [3, 6]
- 2. solve problems taken from various areas of engineering and applied physics by using differential equations. [2,3,6]
- [2] demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,
- [3] demonstrate the ability to apply mathematics to the solutions of problems,
- [6] have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry.

Recommended reading:

Gradshtein I.S., Ryzhik.I.M. Table of integrals, sums, series and products. Academic press.

Abramovitz, M. Stegun. Table of mathematical functions.

Teaching methods:

Pre-readings and lectures.

Assessment methods:

Midterm exams, final exam

Student workload:

Preparatory reading 65 hrs	
Lectures	
Discussions	28 hrs
Homework	
Midterm Ex	ams 4 hrs
Final Exam	3 hrs
TOTAL	
Prepared by: Elman Hasar	oğlu Revision Date: 08.02.2010