Department of Mathematics

Course Profile

Course Number: MATH 311	Course Title: Introduction to Real Analysis	
Required / Elective: Elective	Prerequisite: There is no official pre- requisite for this course. But the student must be familiar with the two semesters materials of calculus	
Catalog Description:	Textbook / Required Material:	
Algebra of sets, the axiom of choice, countable sets, relations and equivalences, partial orde- rings and the maximal principle. Outer measure, measurable sets and Lebesgue measure, measurable functions. The Lebesgue integral and its properties.	Real Analysis, H.L. Royden, 3rd Edition, Prentice Hall, 1988.	
Course Structure / Schedule: (3+0+0) 3 / 6 ECTS		
Extended Description:		
Some facts from naive set theory: i) algebra of sets ii) functions and equivalent sets; iii) countable and uncountable sets. Axioms of real numbers. The extended system of real numbers. Limits and cluster points. Open and closed sets of real numbers. Coverings. Bolzano-Weierstrass theorem. Relations and equivalences, partial ordering and the maximal principle. Outer measure of point sets. Properties of outer measure. Measurable sets. Properties of measurable sets. Limit properties of Lebesgue integral. Lebesgue and Riesz theorems.		
Design content: None	Computer usage: No particular computer usage required.	
Design content: None Course Outcomes: By the end of the course the	usage required.	
Course Outcomes: By the end of the course th	usage required. e students should be able to: alysis, naive set theory, axiomatic method and	
Course Outcomes: By the end of the course th1. understand fundamentals of real and shortcomings of the Riemann integral	usage required. e students should be able to: alysis, naive set theory, axiomatic method and	
 Course Outcomes: By the end of the course th 1. understand fundamentals of real and shortcomings of the Riemann integral 2. work with Lebesgue integral and to a 	usage required. e students should be able to: alysis, naive set theory, axiomatic method and [6], read and write proofs mathematical statements ns by using techniques from calculus, linear	
 Course Outcomes: By the end of the course th 1. understand fundamentals of real and shortcomings of the Riemann integral 2. work with Lebesgue integral and to a on moderate level [1, 6]. [1] demonstrate the ability of solving problem algebra, differential equations, probability a 	usage required. e students should be able to: alysis, naive set theory, axiomatic method and [6], read and write proofs mathematical statements ms by using techniques from calculus, linear nd statistics, fields of mathematics, including analysis,	
 Course Outcomes: By the end of the course th 1. understand fundamentals of real and shortcomings of the Riemann integral 2. work with Lebesgue integral and to a on moderate level [1, 6]. [1] demonstrate the ability of solving problem algebra, differential equations, probability a [6] have a basic knowledge of the main 	usage required. e students should be able to: alysis, naive set theory, axiomatic method and [6], read and write proofs mathematical statements ms by using techniques from calculus, linear nd statistics, fields of mathematics, including analysis, eometry.	
 Course Outcomes: By the end of the course th 1. understand fundamentals of real and shortcomings of the Riemann integral 2. work with Lebesgue integral and to a on moderate level [1, 6]. [1] demonstrate the ability of solving problem algebra, differential equations, probability a [6] have a basic knowledge of the main algebra, differential equations, differential g 	usage required. e students should be able to: alysis, naive set theory, axiomatic method and [6], read and write proofs mathematical statements ms by using techniques from calculus, linear nd statistics, fields of mathematics, including analysis, eometry.	
 Course Outcomes: By the end of the course th 1. understand fundamentals of real and shortcomings of the Riemann integral 2. work with Lebesgue integral and to a on moderate level [1, 6]. [1] demonstrate the ability of solving problem algebra, differential equations, probability a [6] have a basic knowledge of the main algebra, differential equations, differential g Recommended reading: Any textbook on real 	usage required. e students should be able to: alysis, naive set theory, axiomatic method and [6], read and write proofs mathematical statements ms by using techniques from calculus, linear nd statistics, fields of mathematics, including analysis, eometry. l analysis.	
 Course Outcomes: By the end of the course th 1. understand fundamentals of real and shortcomings of the Riemann integral 2. work with Lebesgue integral and to a on moderate level [1, 6]. [1] demonstrate the ability of solving problem algebra, differential equations, probability a [6] have a basic knowledge of the main algebra, differential equations, differential g Recommended reading: Any textbook on rea Teaching methods: Pre-readings and lectures. 	usage required. e students should be able to: alysis, naive set theory, axiomatic method and [6], read and write proofs mathematical statements ms by using techniques from calculus, linear nd statistics, fields of mathematics, including analysis, eometry. l analysis.	
 Course Outcomes: By the end of the course th understand fundamentals of real ana shortcomings of the Riemann integral work with Lebesgue integral and to a on moderate level [1, 6]. [1] demonstrate the ability of solving problem algebra, differential equations, probability a [6] have a basic knowledge of the main algebra, differential equations, differential g Recommended reading: Any textbook on rea Teaching methods: Pre-readings and lectures. 	usage required. e students should be able to: alysis, naive set theory, axiomatic method and [6], read and write proofs mathematical statements ms by using techniques from calculus, linear nd statistics, fields of mathematics, including analysis, eometry. l analysis.	

٦

Discussions and pre-reading	18 hrs
Homework	20 hrs
Midterm Exams	4 hrs
Final Exam	3 hrs
TOTAL	150 hrs to match 25 x 6 ECTS
Prepared by : Elman Hasanoğlu	Revision Date : 08.02.2010