COURSE PROFILE

<table>
<thead>
<tr>
<th>Course Number : EE 242</th>
<th>Course Title : Logic Circuit Design Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required / Elective : Required</td>
<td>Pre-requisite : -</td>
</tr>
<tr>
<td>Corequisite : EE 240</td>
<td>Textbook / Required Material :</td>
</tr>
<tr>
<td>Catalog Description: Experiments with logic gates and combinational circuits, digital arithmetic circuits, multiplexers, flip-flops, counters, shift registers.</td>
<td>Logic Design Lab. Manual</td>
</tr>
<tr>
<td>Course Structure / Schedule : (0+0+2) 1 / 2 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

Extended Description :
This is a required laboratory course for the Computer and Electronics Engineering students. The goal of the course is to give students a hands-on experience in design, implementation, and debugging of digital circuits and prepare students for the design of practical digital hardware systems using Verilog.

Design content :-

Computer usage:
VHDL (Verilog Hardware Description Language)

Course Outcomes:
A student who successfully completes the course will be able to

- Construct and analyze small multi-level combinational logic circuits containing AND, OR, NOT, NAND, NOR, and XOR gates.[5],[6],[7]
- Analyze and design modular combinational logic circuits containing decoders, multiplexers, demultiplexers, 7-segments display decoders and adders. [5],[6],[7]
- Analyze and design of sequential circuits using the concepts of state and state transition. [5],[6],[7]
- Develop basic laboratory skills, recording of data, and write well-organized technical reports. [5],[6],[9]
- Present their application projects via oral and visual media. [9],[11]
- Have an ability of professional and ethical responsibility.[4]
- Learn to work in team, responsibilities of circuit construction.[8]

Level of contribution of course to program outcomes:
- Strong: [5],[6],[8]
- Average: [4],[7],[9],[11]
- Some: -

Recommended reading:
Teaching Methods:
Pre-readings, preliminary works, lecture and group work.

Assessment Methods:
Laboratory reports, class survey in lab., term project, preliminary works

Student Workload:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory reading and pre-works</td>
<td>7 hrs</td>
</tr>
<tr>
<td>Homeworks, laboratory reports</td>
<td>10 hrs</td>
</tr>
<tr>
<td>Projects</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Laboratory work</td>
<td>28 hrs</td>
</tr>
<tr>
<td>Final Exam</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>
| **TOTAL** | **50 hrs** | to match 25 x 2 ECTS

Prepared by: Dr. Ebru Gürsu ÇİMEN
Revision Date: 05.02.2010