Course Profile

<table>
<thead>
<tr>
<th>Course Number: MATH102</th>
<th>Course Title: Calculus II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required / Elective:</td>
<td>Required</td>
</tr>
<tr>
<td>Prerequisites:</td>
<td>Math101</td>
</tr>
</tbody>
</table>

Catalog Description:
Integration techniques; improper integrals. Infinite series, positive and alternating series, power series, Taylor and Maclaurin series. Polar coordinates. Vectors and motion in space, vector valued functions.

Textbook / Required Material:

Course Structure / Schedule: (3+0+2) 4 / 7 ECTS

Extended Description:
Hyperbolic Functions. Basic Integration Formulas; Integration by Parts; Integration of Rational Functions by Partial Fractions; Trigonometric Integrals; Trigonometric Substitutions; Improper Integrals. Polar Coordinates; Graphing in Polar Coordinates; Areas and Length in Polar Coordinates; The Standard Polar Equations for Lines and Circles. Sequences. Infinite Series; Integral Test; Comparison Tests; Ratio and Root Tests; Alternating Series, Absolute and Conditional Convergence; Power Series; Taylor and Maclaurin Series; Convergence of Taylor Series; Error Estimates. Three-Dimensional Coordinate Systems; Vectors; The Dot Product; The Cross Product; Lines and Planes in Space; Vector Functions.

Design content: None

Computer usage: No particular computer usage required

Course Outcomes:
By the end of the course, the students should be able to:

1. prepare for sophomore-level topics in mathematical analysis (differential equations and linear algebra), and calculus-based subjects in science and engineering [1, 2, 3, 7],
2. have knowledge of the fundamental definitions and theorems of elementary calculus [1,2,3,6,7],
3. complete routine derivations associated with calculus, recognize elementary applications of differential and integral calculus, and be literate in the language and notation of calculus [2, 3]
4. have the skills of appropriate level for modeling and solving complicated mathematical problems arising in various natural sciences as well as in electronic and computer sciences [3].

[1] Demonstrate the ability of solving problems by using techniques from calculus, linear algebra, differential equations, probability and statistics,
[2] Demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,
[3] Demonstrate the ability to apply mathematics to the solutions of problems,
[6] Have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry,
[7] Have an ability to function both independently and as a member of a multidisciplinary team.
Recommended reading:

Teaching methods:
Lectures, tutorials, appropriate handouts which provide students with complex diagrams, graphs or formulas.

Assessment methods:
Midterm exams, final exam

Student workload:
- Pre-reading ...8 hrs
- Lectures ..45 hrs
- Tutorials ...30 hrs
- Preparatory reading25 hrs
- Problem solving..40 hrs
- Discussion..20 hrs
- Midterm and final exams.................................7 hrs

TOTAL .. 175 hrs to match 25x7 ECTS

Prepared by: Banu Uzun
Revision Date: 08.02.2010