COURSE PROFILE

Course Name	Code	Semester	Term	Theory +PS+Lab. (hour/week)	Local Credits
Erobability	MATH 230	Fall	3	$3+1+0$	3

| Prerequisites | None |
| :--- | :--- | :--- |

Course Language	English
Course Type	Required
Course Lecturer	Assist.Prof. Deniz Karlı
Course Assistant	The aim of the course is to introduce students to the concepts of probability. Probability is necessary to understand basic modeling and statistical techniques in engineering and in other disciplines. The students learn how to describe quantitatively unpredictable occurrences by using methods and concepts from probability theory.
Course Objectives	By the end of the course the students should be able to: understand the basic knowledge on fundamental probability concepts, including random variable, probability of an event, additive rules and conditional probability compute probabilities and moments such as the expected value and variance of random variables and combinations/functions of random variables recognize and interpret a variety of deterministic and nondeterministic random processes that occur in engineering solve problems independently
Course Learning Outcomes	
Course Content	Basic topics in probability. Probability axioms, sample space, conditional probability, counting methods. Discrete random variables; probability mass function, families of discrete random variables, expectations, function of a random variable, variance and standard deviation. Continuous random variables; distribution function, probability density function, expected values, families of continuous random variables, the normal distribution. Pairs of random variables; joint distribution function, marginal, joint probability function, functions of two random variables, variance, covariance and correlation concepts, moment generating function, central limit theorem.

COURSE CONTENT

Week	Subjects	Related Preparation
$\mathbf{1}$	The Basic Principle of Counting; Permutations; Combinations; Multinomial Coefficients.	Chapter 1

2	Sample Space and Events; Axioms of Probability	Chapter 2
3	Some Simple Propositions; Sample Spaces Having Equally Likely Outcomes	Chapter 2
4	Conditional Probabilities; Baye's Formula \& ODDS Notation.	Chapter 3
5	Independent Events; $\mathrm{P}(. \mid \mathrm{F})$ is a Probability	Chapter 3
6	Random Variables; Discrete Random Variables; Expected Value; Expectation of a Function of a Random Variable	Chapter 4
7	Variance; Bernoulli and Binomial R.V.; Poisson R.V.; Geometric R.V.	Chapter 4
8	Expected Value of Sums of R.V.s; Properties of the Cumulative Distribution Function	Chapter 4
9	Expectation and Variance of Continuous R.V.s; The uniform R.V.; Normal R.V.s	Chapter 5
10	Exponential R.V.s; Distribution of a Function of a R.V	Chapter 5
11	Joint Distribution Functions; Independent R.V.s; Sums of Independent R.V.s	Chapter 6
12	Conditional Distributions: Discrete Case; Conditional Distributions: Continuous Case	Chapter 6
13	Expectation of Sums of R.V.s; Covariance, Variance of Sums and Correlation; Conditional Expectation	Chapter 7
14	Moment Generating Function ; Inequality and The WLOLN; Central Limit Theorem	Chapter 7, Chapter 8

Course Textbooks	Sheldon Ross, A First Course in Probability, Pearson, 8th Edition
Recommended	Yates, R. D. and Goodman, D. J., Probability and Stochastic Processes, John Wiley \& Sons,
References	2004

Semester Requirements	Number	Percentage of Grade
Attendance/Participation	1	5
Laboratory	-	-
Application	-	-
Special Course Internship (Work Placement)	-	-

Quizzes/Studio Critics	-	-
Homework Assignments	13	-
Presentation	-	-
Project	-	-
Seminar/Workshop	-	-
Midterms/Oral Exams	2	60
Final/Resit Exam	1	35
Total	17	100

PERCENTAGE OF SEMESTER WORK	16	65
PERCENTAGE OF FINAL WORK	1	0
Total	17	100

Course Category	Core Courses	X
	Major Area Courses	
	Supportive Courses	
	Media and Managment Skills Courses	
	Transferable Skill Courses	

COURSE'S CONTRIBUTION TO PROGRAM

\#	Program Qualifications / Outcomes	* Level of Contribution				
		1	2	3	4	5
1	To have a grasp of basic mathematics, applied mathematics and theories and applications of statistics.					X
2	To be able to use theoretical and applied knowledge acquired in the advanced fields of mathematics and statistics,					X
3	To be able to define and analyze problems and to find solutions based on scientific methods,					X
4	To be able to apply mathematics and statistics in real life with interdisciplinary approach and to discover their potentials,					X

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Number	Duration (Hours)	Total Workload
Course Hours (Including Exams)	14	3	48

Tutorials	14	2	28
Laboratory	-	-	-
Application	-	-	-
Special Course Internship (Work Placement)	-	-	-
Field Work	-	-	-
Study Hours Out of Class	14	1	14
Presentations / Seminar	-	-	-
Project	-	-	-
Preparatory reading	13	1	13
Homework Assignments	13	1	13
Quizzes	-	-	-
Midterm Exams	2	3	6
Final / Resit Exam	1	3	3
		Total Workload	125

COURSE CATEGORY

ISCED GENERAL AREA CODES	GENERAL AREAS	ISCED BASIC AREA CODES	BASIC EDUCATIONAL AREAS	
1	Education	14	Teacher Training and Educational Sciences	0
2	Humanities and Art	21	Art	0
2	Humanities and Art	22	Humanities	0
3	Social Sciences, Management and Law	31	Social and Behavioral Sciences	0
3	Social Sciences, Management and Law	32	Journalism and Informatics	0
3	Social Sciences, Management and Law	38	Law	0
4	Science	42	Life Sciences	0
4	Science	44	Natural Sciences	0

4	Science	46	Mathematics and Statistics	100
4	Science	48	Computer	0
5	Engineering, Manufacturing and Civil	52	Engineering	0
5	Engineering, Manufacturing and Civil	54	Manufacturing and Processing	0
5	Agriculture	Architecture and Structure	0	
6	Medicine and Welfare	Agriculture, Forestry, Livestock, Fishery	0	
6	Medicine and Welfare	72	Veterinary	0
7	Service	76	Social Services	0
7	Service	Serical	0	
8	Service	Personal Services	0	
8	Service	84	Security Services	0
8	85		0	0

