Course Profiles

Course Number: MATH 142	Course Title: Discrete Mathematics
Required / Elective: Required	Prerequisite: None
Catalog Description: Logic and sets, functions. Mathematical reasoning, counting, relations, graphs, trees, algebraic structures, Boolean algebra. Modelling computation.Textbook / Required Material: Kenneth H. Rosen, Discrete Mathematics and 2003.	

Course Structure / Schedule: $(3+1+0) 3$ / 4 ECTS

Extended Description :

The foundation of discrete mathematics: i) logic (Propositions, Propositional Equivalences, Predicates and Quantifiers); ii) Methods of Proof (Direct and Indirect Proofs, Proofs by Contradiction, Proof Strategy); iii) Sets, Functions, Integers and Division.

Mathematical Reasoning, Mathematical Induction and Recursion: i) Mathematical Induction, Strong Induction ii) Recursion (Recursive Definitions, Structural induction, Recurrence Relations).
Counting: i) The Basic of Counting (Permutations and Combinations); ii) Pigeonhole Principle iii) Inclusion-Exclusion.
Relations: Relations and Their Properties, Representing Relations and Equivalence Relations.
Graphs and Trees: i) (Graph Terminology, Representing Graphs, Graph Isomorphism, Connectivity); ii) Introduction to Trees.

Design content: None

Computer usage: No particular computer usage required

Course Outcomes: By the end of the course, the students should be able to

1. Read and understand logical propositions, mathematical theorems $[\mathbf{1}, \mathbf{2}, \mathbf{3}, 6]$,
2. Follow mathematical proofs, recognize and use the different type of proof techniques [1, 2, 3, 6],
3. Construct mathematical arguments $[\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{6}]$,
4. Count or enumerate objects [5, 6],
5. Work with discrete structures and be able to represent discrete objects and recognize the relationships between discrete objects [5, 6, 7],
6. Use problem-solving skills [5, 6, 7],
7. Recognize the applications of discrete mathematics to computer science, information technologies [4, 7].
[1] Demonstrate the ability of solving problems by using techniques from calculus, linear algebra, differential equations, probability and statistics,
[2] Demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,
[3] Demonstrate the ability to apply mathematics to the solutions of problems,
[4] Have a basic knowledge of economics, information sciences and social sciences,
[5] Have an ability to write computer programs and use algorithms for solving problems,
[6] Have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry,
[7] Have an ability to function both independently and as a member of a multidisciplinary team.

Recommended reading:
George Polya, How to Solve It, Princeton University Pres, 2004.
R.P. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley, 1998.

Teaching methods: Pre-readings, lecture, quizzes, tutorials, individual exercises and discussions.

Assessment methods: Quizzes, homework, final exam

Student workload:

Preparatory reading 30 hrs
Lectures, tutorials, discussions, presentations... 45 hrs
Homework ... 20 hrs
Quizzes .. 2 hrs
Final Exam ... 3 hrs
TOTAL .. 100 hrs... to match 25 x 4 ECTS

Prepared by: Türker Bıyıkoğlu	Revision Date: 08.02.2010

