Department of Mathematics

Course Profiles

Course Number: MATH 142	Course Title: Discrete Mathematics
Required / Elective: Required	Prerequisite: None
Catalog Description:	Textbook / Required Material:
Logic and sets, functions. Mathematical reasoning, counting, relations, graphs, trees, algebraic structures, Boolean algebra. Modelling computation.	Kenneth H. Rosen, <i>Discrete Mathematics and Its Applications</i> , Fifth Edition, McGraw-Hill, 2003.
Course Structure / Schedule: (3+1+0) 3 / 4 ECTS	
Extended Description :	
The foundation of discrete mathematics: i) logic (Propositions, Propositional Equivalences, Predicates and Quantifiers); ii) Methods of Proof (Direct and Indirect Proofs, Proofs by Contradiction, Proof Strategy); iii) Sets, Functions, Integers and Division.	
Mathematical Reasoning, Mathematical Induction and Recursion: i) Mathematical Induction, Strong Induction ii) Recursion (Recursive Definitions, Structural induction, Recurrence Relations).	
Counting: i) The Basic of Counting (Permutations and Combinations); ii) Pigeonhole Principle iii) Inclusion-Exclusion.	
Relations: Relations and Their Properties, Representing Relations and Equivalence Relations.	
Graphs and Trees: i) (Graph Terminology, Representing Graphs, Graph Isomorphism, Connectivity); ii) Introduction to Trees.	
Design content: None	Computer usage: No particular computer usage required
 Course Outcomes: By the end of the course, the students should be able to Read and understand logical propositions, mathematical theorems [1, 2, 3, 6], Follow mathematical proofs, recognize and use the different type of proof techniques [1, 2, 3, 6], Construct mathematical arguments [1, 2, 3, 6], Count or enumerate objects [5, 6], Work with discrete structures and be able to represent discrete objects and recognize the relationships between discrete objects [5, 6, 7], Use problem-solving skills [5, 6, 7], Recognize the applications of discrete mathematics to computer science, information technologies [4, 7]. 	
[1] Demonstrate the ability of solving problems by using techniques from calculus, linear algebra, differential equations, probability and statistics,	
[2] Demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,	

[3] Demonstrate the ability to apply mathematics to the solutions of problems,

[4] Have a basic knowledge of economics, information sciences and social sciences,		
[5] Have an ability to write computer programs and use algorithms for solving problems,		
[6] Have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry,		
[7] Have an ability to function both independently and as a member of a multidisciplinary team.		
Recommended reading: George Polya, <i>How to Solve It</i> , Princeton University Pres, 2004. R.P. Grimaldi, <i>Discrete and Combinatorial Mathematics</i> , Addison-Wesley, 1998.		
Teaching methods: Pre-readings, lecture, quizzes, tutorials, individual exercises and discussions.		
Assessment methods: Quizzes, homework, final exam		
Student workload:		
Preparatory reading	30 hrs	
Lectures, tutorials, discussions, presentations45 hrs		
Homework 20 hrs		
Quizzes 2 hrs		
Final Exam		
TOTAL 100 hrs to match 25 x 4 ECTS		
Prepared by: Türker Bıyıkoğlu	Revision Date: 08.02.2010	