Department of Mathematics

Course Profile

Deguined / Flooting, Deguined	
Required / Elective: Required Pre	rerequisites: Math101
Catalog Description: Integration techniques; improper integrals. Infinite series, positive and alternating series, power series, Taylor and Maclaurin series. Polar coordinates. Vectors and motion in space, vector valued functions.Text Thomas Edit Wess	extbook / Required Material: nomas' Calculus Early Transcendentals 11 th lition / Weir, Hass, Giordano, Addison - esley Publishing Company, 2006

Course Structure / Schedule: (3+0+2) 4 / 7 ECTS

Extended Description: Hyperbolic Functions. Basic Integration Formulas; Integration by Parts; Integration of Rational Functions by Partial Fractions; Trigonometric Integrals; Trigonometric Substitutions; Improper Integrals. Polar Coordinates; Graphing in Polar Coordinates; Areas and Length in Polar Coordinates; The Standard Polar Equations for Lines and Circles. Sequences. Infinite Series; Integral Test; Comparison Tests; Ratio and Root Tests; Alternating Series, Absolute and Conditional Convergence; Power Series; Taylor and Maclaurin Series; Convergence of Taylor Series; Error Estimates. Three-Dimensional Coordinate Systems; Vectors; The Dot Product; The Cross Product; Lines and Planes in Space; Vector Functions.

Design content: None	Computer usage: No particular computer
esign content. None	usage required

Course Outcomes: By the end of the course, the students should be able to:

- 1. prepare for sophomore-level topics in mathematical analysis (differential equations and linear algebra), and calculus-based subjects in science and engineering [1, 2, 3, 7],
- 2. have knowledge of the fundamental definitions and theorems of elementary calculus [1,2,3,6,7],
- 3. complete routine derivations associated with calculus, recognize elementary applications of differential and integral calculus, and be literate in the language and notation of calculus [2, 3]
- 4. have the skills of appropriate level for modeling and solving complicated mathematical problems arising in various natural sciences as well as in electronic and computer sciences [3].

[1] Demonstrate the ability of solving problems by using techniques from calculus, linear algebra, differential equations, probability and statistics,

[2] Demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,

[3] Demonstrate the ability to apply mathematics to the solutions of problems,

[6] Have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry,

[7] Have an ability to function both independently and as a member of a multidisciplinary team.

Recommended reading:

Calculus with analytic geometry / C.H. Edwards, Jr., David E. Penney. Englewood Cliffs, N.J., Prentice Hall, c1994. 4th ed.

Calculus with analytic geometry / Howard Anton ; in collaboration with Albert Herr. New York, Wiley, c1995. 5th ed.

Calculus with analytic geometry / Richard A. Silverman. Englewood Cliffs, N.J., Prentice-Hall, c1985.

Teaching methods: Lectures, tutorials, appropriate handouts which provide students with complex diagrams, graphs or formulas.

Assessment methods: Midterm exams, final exam

Student workload:

Pre-reading	8 hrs
Lectures	45 hrs
Tutorials	30 hrs
Preparatory reading	25 hrs
Problem solving	40 hrs
Discussion	20 hrs
Midterm and final exams	7 hrs
TOTAL	175 hrs to match 25x7 ECTS

Prepared by: Banu Uzun

Revision Date: 08.02.2010