Department of Mathematics

Course Profile

$\left.\begin{array}{|l|l|}\hline \text { Course Number: MATH101 } & \text { Course Title: Calculus I } \\ \hline \text { Required / Elective: Required } & \text { Prerequisites: None } \\ \hline \begin{array}{l}\text { Catalog Description: Functions, graphs, } \\ \text { limits and continuity. Derivatives, derivative } \\ \text { rules, chain rule, implicit differentiation. } \\ \begin{array}{l}\text { Applications of derivatives. Indefinite } \\ \text { integrals, integration by substitution, definite } \\ \text { integrals. Applications of integrals. } \\ \text { Transcendental functions. }\end{array}\end{array} \begin{array}{l}\text { Textbook / Required Material: } \\ \text { Thomas' Calculus Early Transcendentals 11 }\end{array} \\ \text { Edition / Weir, Hass, Giordano, Addison - } \\ \text { Wesley Publishing Company, 2006 }\end{array}\right]$

Course Structure / Schedule: (3+0+2) 4 / 7 ECTS

Extended Description: Functions and Graphs; Identifying Functions; Combining Functions; Exponential Functions. Inverse Functions and Logarithms; Rates of Changes and Limits; Calculating Limits Using the Limit Laws. The Precise Definition of a Limit; One-Sided Limits and Limits at Infinity; Infinite Limits and Vertical Asymptotes. Continuity, Intermediate Value Theorem. Tangents and Derivatives; The Derivative as a Function; Differentiation Rules. The Derivative as a Rate of Change; Derivatives of Trigonometric Functions; The Chain Rule and Parametric Equations. Implicit Differentiation; Derivatives of Inverse Functions and Logarithms; Inverse Trigonometric Functions. Linearization and Differentials; Extreme Values of Functions; The Mean Value Theorem. Monotonic Functions and the First Derivative Test; Concavity and Curve Sketching. Indeterminate Forms and L'Hopital's Rule. Antiderivatives; Sigma Notation and Limits of Finite Sums. The Definite Integral; The Fundamental Theorem of Calculus. Indefinite Integrals and the Substitution Rule; Substitution and Area Between Curves. Volumes by Slicing and Rotation About an Axis. Volumes by Cylindrical Shells; Lengths of Plane Curves.

Design content: None \quad Computer usage: No particular computer
Course Outcomes: By the end of the course the students should be able to:

1. prepared for Calculus II and calculus-based subjects in science and engineering [1, 2, 3, 7],
2. have a knowledge of the fundamental definitions and theorems of elementary calculus [1,2,3,6,7] ,
3. complete routine derivations associated with calculus, recognize elementary applications of differential and integral calculus, and be literate in the language and notation of calculus [2, 3],
4. have the skills of appropriate level for modeling and solving complicated mathematical problems arising in various natural sciences as well as in electronic and computer sciences [3].
[1] Demonstrate the ability of solving problems by using techniques from calculus, linear algebra, differential equations, probability and statistics,

[2] Demonstrate knowledge of mathematics to construct, analyze and interpret mathematical models,

[3] Demonstrate the ability to apply mathematics to the solutions of problems, [6] Have a basic knowledge of the main fields of mathematics, including analysis, algebra, differential equations, differential geometry, [7] Have an ability to function both independently and as a member of a multidisciplinary team.	
Recommended reading:	
Calculus with analytic geometry / C.H. Edwards, Jr., David E. Penney. Englewood Cliffs, N.J., Prentice Hall, c1994. 4th ed.	
Calculus with analytic geometry / Howard Anton; in collaboration with Albert Herr. New York, Wiley, c1995. 5th ed.	
Calculus with analytic geometry / Richard A. Silverman. Englewood Cliffs, N.J., PrenticeHall, c1985.	
Teaching methods: Lectures, tutorials, appropriate handouts which provide students with graphs or formulas.	
Assessment methods: Midterm exams, final exam	
Student workload:	
Pre-reading .. 8 hrs	
Lectures 45 hrs	
Tutorials 30 hrs	
Preparatory reading 25 hrs	
Problem solving and homework 40 hrs	
Discussion.. 20 hrs	
Midterm and final exams............................. 7 hrs	
TOTAL 175 hrs to match 25x7 ECTS	
Prepared by: Banu Uzun	Revision Date

