

Course Profile - Department of Physics

Course Number : PHYS 334	Course Title : Quantum Mechanics II
Required / Elective : Required	Pre / Co-requisites : PHYS 333
Catalog Description:	Textbook / Required Material :
Spin and angular momentum, time- independent perturbation theory, time- dependent perturbation theory, many particle systems, scattering theory, variational principle, WKB approximation, basics of quantum computations.	 David J. Griffiths, <u>Introduction to Quantum</u> <u>Mechanics, 2nd ed.</u> Prentice-Hall, 2005. Gasiorowicz, S. <u>Quantum Physics, 3rd edition</u>, Wiley, 2003.

Course Structure / Schedule : (3+0+2) 4 / 8 ECTS

Extended Description :

Spin and Angular Momentum. Time-Independent Perturbation Theory. Corrections in the Hydrogen Atom Problem. Many Particle Systems: Identical Particles, Atoms and Molecules. Variational Principle and WKB Approximation. Time-Dependent Perturbation Theory. Charged Particles in an Electromagnetic Field. Scattering Theory. Basics of Quantum Computations

	Computer usage: Students use computational and
Design content : None	graphics software in studying the WKB approximation and the time-dependent perturbation theory.

Course Learning Outcomes [relevant program outcomes in brackets]:

On successful completion of this course students will be able to

- 1. visualize the concept of spin and discuss spin-spin and spin-orbit interactions [1];
- 2. recognize and apply special approximation techniques such as the perturbation theory, the WKB approximation, the variational principle to solve realistic problems [1,2, 5];
- 3. analyze the behavior of many-particle systems and develope an understanding of the concept of identical particles [1, 6, 7];
- 4. establish a conncetion between the atomic structure of the chemical elements and the theory of quantum mechanics [1, 6];
- 5. make a distinction between classical and quantum mechanical scattering of particles [1];
- 6. develope an understanding of the basic concepts of quantum computing [7].

Recommended reading:

- 1. Shankar, R. *Principles of Quantum Mechanics*, 2nd edition, New York: Plenum, 1994.
- 2. Feynman, R.P., Leighton, R.B., Sands, M. *<u>The Feynman Lectures on Physics</u>, Volume III*, Addison Wesley, 1966.

Teaching methods:

Lectures and exercise sessions of approximately 5 hours per week; pre-readings and homework problems.

Assessment methods:

Two mid-term examinations, a final examination, weekly homework assignments, and quizzes.

Student workload:		
Pre-reading	7 hrs	
Lectures, discussions	45 hrs	
Exercise sessions	30 hrs	
Homework	40 hrs	
Independent work	73 hrs	
Laboratory work	0 hrs	
Examinations	5 hrs	
TOTAL		
Prepared by : İsmail Karakurt , 01.02.2010	Revision Date :	